Ergodic Theory and Measured Group Theory
Lecture 9

Detour intr wapacot realizations of a transformation.
Theorem. The deft transformations on $\left(2^{N}\right)^{\mathbb{N}}$ is universal in the sense but every Bored tecanffocmation on a st. Bowel space X equivariantly Bone embeds into the strait, ie., \exists Biel $\varphi: X \leftrightarrow\left(2^{\mathbb{N}}\right)^{\mathbb{N}}, T, \varphi \cdot T=s \circ \varphi$.
Parol, Lt T be a Bored tanstromation an a st, Band X. Even without using the Bal is om. Heosen, one cans show hat ∂ Bowel $x \leftrightarrow 2^{\mathbb{N}}$ as follows: Fix $\left(u_{a}\right)_{\text {net }}$ che collection of Band sets generating $B(x)$ al map X es 2^{N} by $x \mapsto\left(\mathbb{1}_{u_{n}}^{(d)}\right)_{u \in \mathbb{N}}$. This is scarily seen to he Boned. X Mu. Tuns, WLOM, $X:=2^{\text {N }}$, Map each $x \in 2^{N}$ to $\left(T^{n} x\right)_{u \in \mathbb{N}}$. This works.

Coo. An Boer transformation T on a st prob. spae (X, r) is measureisomorphic to the shift tronstormetion on $\left(2^{N}\right)^{\text {iN }}$ with some Bond probe was.
Prot. lat $\varphi: X \cos \left(2^{\mathbb{N}}\right)^{\mathbb{N}}$ be a Boas embedding. let $v:=\varphi_{*} \mu$,
i.c. $\quad v(B)=v^{N}\left(\varphi^{-1}(B)\right) \quad \forall B S\left(2^{N}\right)^{N}$. Then up to a ν-nal nt, φ is a Borel bijection, hence Boel isom. by the Latin-Souslin then from DST.

Couatable ycoups (axtioned), 0 Líneac groups: $-G L_{n}(\mathbb{Z}):=$ all invectible natrices with integee wefficients al $\neq 0$ ditecminant (hence det $= \pm 1$), i.e. when acting on \mathbb{R}^{n}, these we volucepreserving trantermations (i.e. measure-proserving).

- $S \operatorname{Ln}(\mathbb{Z})=$ all matrices in $G l_{n}(0)$ but $\operatorname{det}=1$, i.e. preserve oriestation.
- $S O_{n}(\mathbb{Q}):=$ norm-preserving matrices, i.e. orthogond.
- Weath products. Lit A al Γ be ctol yoorps. Denote:

$$
A_{<\infty}^{\Gamma}:=\bigoplus_{\Gamma} A:=\left\{\left(a_{\gamma}\right)_{\gamma \in \Gamma} \in A^{\Gamma}: \operatorname{inpp}^{r}\left(a_{\gamma}\right)_{\gamma \in \Gamma}{ }^{i}\right.
$$

tividel, in particular, ${ }^{\Gamma} A_{2 \infty}^{\Gamma}$ is a atbl group. For exaple, $A:=\mathbb{Z} / 2 \mathbb{Z}$ al $\Gamma:=\mathbb{Z}$ then $A_{c \infty}^{0}$ is all Finithly-suppoosted biracy bi-infinite secueches), $\Gamma \sim A_{c a}^{\Gamma} b_{b}$ sift: $\gamma \cdot\left(a_{\delta}\right)_{\delta \in \Gamma}:=\left(a_{\delta \gamma}\right)_{\delta \in \Gamma}$ (or $\left(a_{n-1} \cdot \delta\right) \delta \in \Gamma$, both are left cotions). Thus $A_{<\infty}^{\Gamma} \ngtr \Gamma$ is letined hy this cluitt action al is call the (cestricted)

Wreath product of A al Γ, and denoted by $A\{\Gamma$. For the exingle above of $A:=\mathbb{D} 2 \mathbb{D}$ al $\Gamma:=\mathbb{D}$, the wreath product $\mathbb{Z} / 2 \mathbb{D}\} \mathbb{Z}$ is called the lamplighter group. This is hearse for any $x \in(\mathbb{Z} / 2 \mathbb{Q})_{<\infty}^{\mathbb{D}}$ al $x_{0}:=\mathbb{1}_{103} \epsilon$ $(\mathbb{\pi} / 2 \mathbb{2})^{\mathbb{Z}}$, ie. $x_{0}:=\begin{array}{ccccccccc}0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & \cdots\end{array}$, , then

$$
(x, 1) \cdot\left(x_{0}, 0\right)=\left(x+s\left(x_{0}\right), 1\right)=\underset{x \rightarrow x \text { switches on diff. }}{\substack{-3-2}}
$$

The canonical gesecting set is $\left\{\left(x_{0}, 0\right),(0,1)\right\}$. The urasponaticy Cables graph is this:

Cong actions. O The rotation action of \mathbb{Z} by sone angle on S.

- The odometer action (howwork) of \mathbb{Z} on 2^{N}.
- The shift action of any ctbl sp Γ on X^{Γ}, where X is any st. Bowel space, eeg. $X=2$. $\forall \gamma \in \Gamma, \gamma \cdot\left(x_{\delta}\right)_{\delta \in \Gamma}:=\left(x_{\delta \gamma}\right)_{\delta \in \Gamma}$.

If v is a Boned prot. measure on $X \quad d \quad \rho=\nu^{\Gamma}$, then the shift action is μ-preserving. This action is called the Bernoulli action.

Remark. The dist t action $\Gamma \leadsto\left(2^{N}\right)^{\Gamma}$ is universal among all Boreal actions of Γ.

Del. $\Gamma^{\wedge} X$, hae Γ is abl $d X$ is st. Bowel, is called a Bone action if each $\gamma \in \Gamma$ acts as a Bowel (invertible) remasternation.

More eagles. $0 \mathrm{SO}_{n}(\mathbb{Q}) \xlongequal{\Perp S^{n-1} \text { by rotations is paps, where }}$ the ensure is the uhesgue ensure through the idutitiafic: $S^{(n-1} \cong(0,1)^{n-1}$.

- $6 \operatorname{Ln}(\mathbb{Z}) \xrightarrow{\longrightarrow} \mathbb{T}^{n}:=\mathbb{R}^{n} / \mathbb{R}^{n}$ by first acting on \mathbb{R}^{n} as usual (unctris multiplicatia) Kan takin wad! This is massure-paseving because bet $= \pm 1$,
- Real It $\mathbb{F}_{\alpha}, d \leq \infty$, denotes the tree ycoxp on d geurators $s=\left\{a_{1}, a_{2}, \ldots, a_{d}\right\}$. The boundary of \mathbb{F}_{d} is $\partial \mathbb{F}_{d}=$ all reduced is finite words, ie.
sequences $\left(s_{n}\right)_{u \in \mathbb{N}}$, there $s_{n} \in S^{ \pm 1}$, sit. $s_{u} \neq s_{n+1}^{-1} \forall_{n}$. Detinue he e natural action of \mathbb{F}_{d} or $\partial \mathbb{F}_{d}$ by concatenating al rechciing, i.e $\forall w \in \mathbb{F}_{d} \quad d x \in \partial \mathbb{F}_{d}$, $\omega \cdot x=\operatorname{ceduced}(\omega x)$. For example, for $\mathbb{F}_{2}:=\langle a, b\rangle$,

$$
\begin{aligned}
& x:=a b b a^{-1} b a^{-1} b^{-1} \ldots \\
& a b^{-1} \cdot x=a b^{-1} x \\
& b^{-1} a^{-1} \cdot x=b a^{-1} b a^{-1} b^{-1} \ldots \\
& a^{-1} \cdot x=b b a a^{-1} b a^{-1} b^{-1} \ldots=s(x) .
\end{aligned}
$$

Let's define a measure on $\partial \mathbb{F}_{2}$. It's enough to define it on basic dopen sues $[\omega]:=\left\{x \in \partial F_{2}: \times\right.$ begins nite $\left.\omega\right\}$, $\omega \in \mathbb{F}_{2}$. A prob. measure on $\partial \mathbb{F}_{2}$ can be given by a σ-finite meagre on \mathbb{F}_{2} it. $\sum_{v_{0} s \in \mathbb{F}_{2}}$ wights $\left(w^{n} s\right)=$ weight (s), wheres ranges over S^{\ddagger}.

For the first litter, we give $\frac{1}{4}$ prob. each,
 and each next letter $1 / 3$ prob. Thus, we get the wivistem prob. on the set of all reduced ards of loath a, for fixed a. Monk of this as a wabacklraching random walk. Denote this measure on $\partial \mathbb{F}_{2}$ by μ_{u} ("u"foc uniform). One can slow the j_{u} is shift-iurarial, hat it's ot
invariant under the action of \mathbb{F}_{2}. Indeed, $\mu_{u}([a])=\frac{1}{4}$, $a^{-1} \cdot[a]=\partial \mathbb{F}_{1} \backslash\left[a^{-1}\right]=[a] \cup[b] \vee\left[b^{-1}\right]$ Lis ancasure $\frac{3}{4}$. This is a mice example of a non-pup action of \mathbb{F}_{2}.

Exercise. Show hat $\mathbb{F}_{2}>\partial \mathbb{F}_{2}$ is free μ_{n}-ace., here tee means $\forall \gamma \in F_{2}, \gamma$ has wo fixed point in $\partial \mathbb{F}$, so μ_{4} ale. Free is equiv. to Fixed Pt (γ) being μ_{n}-mull for each $\gamma \in \Gamma$.

